Energy Levels of Pt197

S. Calzavara Alves *

Centro Brasileiro de Pesquisas Físicas

S. de Barros **, A. Goncalves **

Instituto de Física da Universidade de São Paulo

(Z. Naturforsch. 29 a, 1917-1918 [1974]; received September 9, 1974)

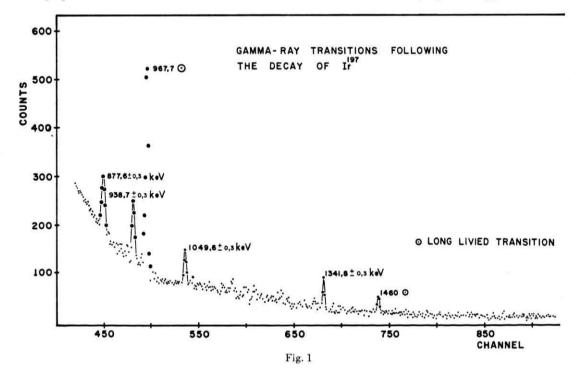
Spectra of γ rays (higher than 0.3 MeV) following the β decay of ${\rm Ir}^{197}$ are measured with a Ge-Li detector (30 cm³). The existence of four new branches to the ${\rm Pt}^{197}$ levels at 877.6 ± 0.3 ; 939.7 ± 0.3 ; 1049.6 ± 0.3 ; 1341.8 ± 0.3 keV is proposed and lower limit $\log ft$ values are determined. Spin and parity $(1/2,\ 3/2)^+$ are assigned to the ground state of ${\rm Ir}^{197}$.

A new transition of 299.5 ± 0.2 keV was observed following the Pt197 (80 min) decay.

Introduction

The Pt¹⁹⁷ nucleus is situated in a transitional region. So, changes between spherical and deformed shapes can be expected to happen. A good understanding of the nuclear structure of this nucleus would be very interesting, but previous experimental information has been rather sparse. It are summarized in the compilation ¹.

The present study was undertaken with the hope to obtain data on Pt¹⁹⁷ nuclear levels which could help the development of a more satisfactory theory of "nearly spherical" even odd nuclei.


Experimental Technique

Natural Platinum was irradiated in the Bremsstrahlung beam of a linear accelerator at 28 MeV producing Ir^{197} by (γ, p) reactions. States in Pt^{197} were accessible from the decay or Ir^{197} whose disintegration energy is 2 MeV^2 . The main disadvantage of this method is that below 300 keV it becomes very difficult to distinguish γ rays corresponding to transitions in Pt^{197} . There is in this region a strong contribution of other nuclei also formed.

A special search was then performed for weak lines above 300 keV, and 3 mm Pb and Cu absorbers were introduced in order to decrease the strong low energy background. Measurements of gamma-ray spectra were carried out and energies, intensities, and half-lifes determined.

Results

Figure 1 illustrates one of the gamma-ray spectra from Ir^{197} decay. Four weak lines unrecorded previously and with half-lives in strict similarity to that of the Ir^{197} ground state are found. In several runs performed in order to check our results, the new gamma-ray values were systematically consistent. Lower limit log ft values could be estimated from our results and from β spectroscopy data ⁴.

* Present address: Wyoming University, USA.

** Research Fellow of Conselho Nacional de Pesquisas.

1918 Notizen

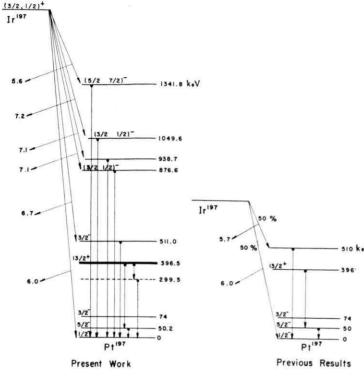


Fig. 2

Table 1. Gamma transitions following the β decay of Ir^{197} and $\log f t$ values to the levels of Pt^{197} .

Energy (keV)	Relative intensity	$\log f t$
$511,0\pm0,2$	100	6,7
$877,6 \pm 0,2$	0.8 ± 0.1	7.1
$938,7 \pm 0,3$	0.9 ± 0.1	7.1
1049.6 ± 0.3	0.51 ± 0.05	7.2
1341.8 ± 0.3	0.45 ± 0.05	5,6

Table 2. Energy levels (keV) of Pt197.

Our work	Mukerjee 4		Samour 5	
$1r^{197\beta^-} \rightarrow Pt^{197}$	Pt ¹⁹⁶ (d,p) Pt ¹⁹⁷	Pt ¹⁹⁸ (d,t) Pt ¹⁹⁷	Pt ¹⁹⁶ (n,γ) Pt ¹⁹⁷	
877,6±0,3	880 ± 20	880 ± 20	_	
$4 \begin{array}{c} 938,7 \pm 0,3 \\ 1049,6 \pm 0,3 \end{array}$	7	7	965 ± 30	
$1049,6 \pm 0,3$ $1341,8 \pm 0,3$	1070 ± 20	1050 ± 20 1320 ± 20	1076±30 —	

Table 3. Gamma transitions following the decay of Pt197m.

Our work		Haverfield et al.	
energy (keV)	relative intensity	energy (keV)	relative intensity
346.5 ± 0.2	100	346	100
$279,1 \pm 0,2$	21 ± 2	279	21 ± 2
$299,5 \pm 0.2$	0.9 ± 0.1	17 -11	-

Table 1 lists energies, intensities, and lower limit log ft values for the proposed β branches. The resulting spin and parity assignments are in complete agreement with nuclear reaction data ^{4,5} if the ground state spin of ${\rm Ir}^{197}$ is assumed to be $1/2^+$ or $3/2^+$.

In Table 2 we summarize the experimental information available, concerning the Pt¹⁹⁷ energy levels, from our work and $(d,p)^4$, $(d,t)^4$ and $(n,\gamma)^5$ experiments. As a whole, the set of levels is in good agreement.

With respect to transitions following the Pt¹⁹⁷ (80 min) decay, also analysed in the present work,

⁴ P. Mukherjee, Nucl. Phys. 64, 65 [1965].

a new transition of $299.5\pm0.2\,\mathrm{keV}$ was observed. It can be interpreted as arising from the level $280\pm20\,\mathrm{keV}$ detected by Mukherjee ⁴.

Discussion

All the gamma-rays observed in our measurements are positionned in a tentative decay scheme shown in comparison with previous results ⁶ in Figure 2.

The ground state spin proposed according to our log ft values is in conformity with results of all other measured nuclei with $Z = 77 \, (\text{Ir}^{191}, \, \text{Ir}^{193})^7$ and $Z = 79 \, (\text{Au}^{197}, \, \text{Au}^{199})^{6, \, 7}$.

¹ M. B. Lewis, Nucl. Data. Sheets, B 7, 129 [1972]; reference list.

² A. H. Wapstra and N. B. Goue, Nucl. Data. Tables, A 9, 303 [1971].

³ S. Homma, T. Kuroyanagi, and H. Morinaga, J. Phys. Soc. Japan 16, 841 [1961].

⁵ C. Samour, Partial Radiative Capture of Resonance Neutrons, Saclay, Comissariat d'Energie Atomique, 1969 (CEA-R-3776).

⁶ A. J. Haverfield, H. T. Easterday, and J. M. Hollander, Nucl. Phys. **64**, 379 [1965].

⁷ G. H. Fuller and V. W. Cohen, Nucl. Data. Tables A 5, 433 [1969].